Week 1	Week 2	Week 3	Week 4	Week 5	week 6
Addition and	Geometry	Multiplication and	geometry – position	Measures - time	measures –
subtraction	shapes	division	and direction		length, weight,
					capacity
solve problems with	identify and describe	recall and use	order and arrange	Tell the time to the	choose and use
addition and	the properties of 2-D	division facts for 2, 5	combinations of	quarter hour <mark>/</mark> 5	appropriate
subtraction:	shapes, including the	and 10 multiplication	mathematical objects	minute intervals	standard units to
using concrete	number of sides and	tables, including	in patterns and		estimate and
objects and pictorial	line symmetry in a	recognising odd and	sequences		measure
representations,	vertical line	even numbers			length/height in
including those			use mathematical		any direction
involving numbers,	identify and describe	calculate	vocabulary to		(m/cm); mass
quantities and	the properties of 3-D	mathematical	describe position,		(kg/g);
measures	shapes, including the	statements for	direction and		temperature (°C);
applying their	number of edges,	division within the	movement, including		capacity
increasing knowledge	vertices and faces	multiplication tables	movement in a		(litres/ml) to the
of mental and		and write them using	straight line and		nearest
written methods	identify 2-D shapes	the division (÷) and	distinguishing		appropriate unit,
	on the surface of 3-D	equals (=) signs	between rotation as		using rulers,
recall and use	shapes, [for example,		a turn and in terms of		scales,
addition and	a circle on a cylinder	show that	right angles for		thermometers
subtraction facts to	and a triangle on a	multiplication of two	quarter, half and		and measuring
20 fluently, and	pyramid]	numbers can be done	three-quarter turns		vessels,where
derive and use		in any order	(clockwise and anti-		divisions are in 1s,
related facts up to	compareand sort	(commutative) and	clockwise)		2s, 5s and 10s
100	common 2-D and 3-D	division of one			
	shapes and everyday	number by another			
add and subtract	objects.	cannot			
numbers using					
concrete objects,		solve problems			
pictorial		involving division,			
representations, and		using materials,			
mentally, including:		arrays, repeated			
a two-digit number		addition, mental			

and ones	methods, and		
a two-digit number	multiplication and		
and tens	division facts,		
two two-digit	including problems in		
numbers	contexts		
adding three one-			
digit numbers			
show that addition of			
two numbers can be			
done in any order			
(commutative) and			
subtraction of one			
number from another			
cannot			
recognise and use			
the inverse			
relationship between			
addition and			
subtraction and use			
this to check			
calculations and			
solve missing number			
problems.			
solve simple			
problems in a			
practical context			
involving addition			
and subtraction of			
money of the same			
unit, including giving			
change			

Working towards expected standard at end of key stage 1

Working at expected standard at end of key stage 1

working at greater depth within the expected standard at the end of key stage 1